Dobrushin ergodicity coefficient for Markov operators on cones, and beyond

نویسندگان

  • Stéphane Gaubert
  • Zheng Qu
چکیده

The analysis of classical consensus algorithms relies on contraction properties of adjoints of Markov operators, with respect to Hilbert’s projective metric or to a related family of seminorms (Hopf’s oscillation or Hilbert’s seminorm). We generalize these properties to abstract consensus operators over normal cones, which include the unital completely positive maps (Kraus operators) arising in quantum information theory. In particular, we show that the contraction rate of such operators, with respect to the Hopf oscillation seminorm, is given by an analogue of Dobrushin’s ergodicity coefficient. We derive from this result a characterization of the contraction rate of a non-linear flow, with respect to Hopf’s oscillation seminorm and to Hilbert’s projective metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov‎ ‎processes

‎In the present paper we investigate the $L_1$-weak ergodicity of‎ ‎nonhomogeneous continuous-time Markov processes with general state‎ ‎spaces‎. ‎We provide a necessary and sufficient condition for such‎ ‎processes to satisfy the $L_1$-weak ergodicity‎. ‎Moreover‎, ‎we apply‎ ‎the obtained results to establish $L_1$-weak ergodicity of quadratic‎ ‎stochastic processes‎.

متن کامل

The Case of Equality in the Dobrushin–Deutsch–Zenger Bound

Suppose that A = (ai,j) is n × n real matrix with constant row sums μ. Then the Dobrushin–Deutsch–Zenger (DDZ) bound on the eigenvalues of A other than μ is given by Z(A) = 1 2 max 1≤s,t≤n n X r=1 |as,r − at,r|. When A a transition matrix of a finite homogeneous Markov chain so that μ = 1, Z(A) is called the coefficient of ergodicity of the chain as it bounds the asymptotic rate of convergence,...

متن کامل

On stability properties of positive contractions of L-spaces accosiated with finite von Neumann algebras

In the paper we extent the notion of Dobrushin coefficient of ergodicity for positive contractions defined on L-space associated with finite von Neumann algebra, and in terms of this coefficient we prove stability results for L-contractions.

متن کامل

Ela on the Approximation of Ergodic Projections and Stationary Distributions of Stochastic Matrices

Let A be a stochastic n × n matrix and PA be the ergodic projection of A, i.e., the projection onto N(I − A) along R(I − A). This paper considers approximations of PA and of stationary distributions of A by using appropriate families of stochastic matrices induced by A and derives error estimates in terms of the Dobrushin ergodicity coefficient of (I−A), the group inverse of I −A.

متن کامل

On the approximation of ergodic projections and stationary distributions of stochastic matrices

Let A be a stochastic n × n matrix and PA be the ergodic projection of A, i.e., the projection onto N(I − A) along R(I − A). This paper considers approximations of PA and of stationary distributions of A by using appropriate families of stochastic matrices induced by A and derives error estimates in terms of the Dobrushin ergodicity coefficient of (I−A), the group inverse of I −A.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1302.5226  شماره 

صفحات  -

تاریخ انتشار 2013